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Spatial correlation of temperature in turbulent Rayleigh-Bénard convection
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A cubic Rayleigh-Bénard cell is operated at a Rayleigh number of 1.5X 10 and a Prandtl number of 6.1.
The cell is equipped with thermistors placed along the vertical line through the center of the cell. The spatial
correlation of temperature is deduced from simultaneous temperature recordings from these thermistors. The
correlation function is well fitted by the sum of two exponentials. There is no cascade in the temperature field
as only two characteristic length scales appear. The direct measurement of spatial correlations allows us to test

the validity of Taylor’s hypothesis in this flow.
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I. INTRODUCTION

Rayleigh-Bénard convection is one of the best studied
model systems of turbulence. The turbulent fluctuations of
velocity and temperature are usually characterized by their
spectra. The classical theoretical work focuses on homoge-
neous turbulence and makes predictions on the spectral dis-
tribution of kinetic energy and temperature fluctuations as a
function of (spatial) wave number. Two problems arise when
comparing theory with experiment. First, real flows are never
homogeneous. In the case of Rayleigh-Bénard convection in
cubes or cylinders of modest aspect ratio (which are the most
frequently used geometries), a large scale circulation devel-
ops. In a cubic cell, the flow is organized in a single roll
oriented along the diagonal of the cell. The mean velocity is
zero in the center of the cell and maximum in the vicinity of
the walls. Second, most experiments record velocity or tem-
perature at a fixed point in space and yield spectra as a func-
tion of frequency, not wave number. The translation from
temporal to spatial domain requires the Taylor hypothesis
which assumes that an advection velocity sweeps turbulent
fluctuations past a stationary probe fast enough so that the
fluctuations can be regarded as frozen in the fluid. Tempera-
ture measurements in highly turbulent Rayleigh-Bénard con-
vection have revealed spectra which agree with the theoreti-
cally predicted Bolgiano spectrum if the Taylor hypothesis is
assumed to be valid [1-3]. However, these spectra have also
been observed in the center of the large scale roll where the
average advection velocity is zero. It is thus of interest to
directly measure the spatial spectrum of temperature fluctua-
tions, or alternatively, the spatial correlation function, along
the central axis of the cell. Direct measurements of spatial
temperature spectra were performed before using optical
scanning [4,5] which results in the spectrum spatially aver-
aged along the laser beam. The method has the advantage
that the spatial resolution is very high and the disadvantage
that the temperature field is not truly local as the one ob-
tained using thermistors.

The measurements reported in this paper investigate a
single state with Rayleigh number 1.5X 10° and Prandtl
number 6.1. The temperature fluctuations are measured along
the central axis of the cell along which the mean advection
velocity is zero and the flow is neither homogeneous nor
isotropic. The temporal spectra in this state do not show the
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Bolgiano spectrum with its characteristic power-law depen-
dence indicative of a fully developed cascade, but the spec-
trum is broad and covers all frequencies from zero up to the
dissipative range. Other features, such as the histogram of
temperature fluctuations and the scaling of the heat transport
with Rayleigh number are already the same as in more tur-
bulent states [6—8]. The Reynolds number of the flow under
consideration is 1200 based on the maximum velocity and
the height of the cell.

Thermal boundary layers form at the top and bottom
boundaries of a convection cell. Coherent structures are as-
sociated with those boundary layers, most importantly
plumes. These objects have the shape of mushrooms in visu-
alizations using shadowgraph or thermochromic liquid crys-
tals [9,10]. Most of them are swept by the large scale flow
towards the sidewalls while they move vertically away from
the thermal boundary layers, so that only few traverse the
center of the cell. Histograms of temperature fluctuations
near the boundaries carry the signature of plumes and are
skewed. The skewness decreases towards the center of the
cell where the histograms are symmetric and exponential
[11-13]. This, together with the broadband spectrum, sug-
gests that structures of all scales should exist in the center of
the cell. The correlation measurements reported here show
that on the contrary, structures of only two different sizes
dominate the temperature field. This is compatible with the
claim that in turbulent flows the large and small scales are
strongly coupled and that the traditional cascade picture is a
crude representation of such flows as expressed in the review

paper [14].
II. EXPERIMENTAL APPARATUS

The convection cell is the same as used in [15]. A cubic
cell of height d=20 cm with Plexiglas sidewalls and silver
coated copper plates at the top and bottom is electrically
heated from below and water cooled from above. The cell is
filled with water. The temperature of the bottom and top
plates are typically set to 30 °C and 20 °C, respectively, so
that the temperature difference A is A=10 °C. Let v, «, and
a be the viscosity, thermal diffusivity, and thermal expansion
coefficient of water, and denote by G the gravitational accel-
eration. Using the material properties at the center of the cell,
the Rayleigh number Ra=GaAd?/(kv) and Prandtl number
Pr=v/k are Ra=1.5X 10’ and Pr=6.1.
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Temperature profiles were measured using thermistors
with a diameter of 400 wm. Each thermistor was individually
calibrated against a digital thermometer with a 100 €} sens-
ing element. A thermistor was connected to a Wheatston
bridge as a resistance arm and the temperature was calcu-
lated from the resistivity of the thermistor using a previously
determined calibration curve. Nine thermistors have been
placed on a vertical rod through the center of the cell, each
2 cm apart. The lower- and uppermost thermistors were 2 cm
away from the plates. Together with thermistors in the plates,
it was possible to measure at every instant the temperature
profile along the center line with a resolution of 2 cm. In
addition, another movable thermistor was available that
could be translated vertically along the center line using a
translation table mounted on the top of the upper plate. This
made it possible to calculate the correlation with a 1 mm
resolution at the points of interest. Correlations were mea-
sured by recording time series of all thermistors simulta-
neously for 2 h before shifting the movable thermistor to the
next position. The sampling frequency was 4.4 Hz which
ensured that the power spectra cover the whole range of fre-
quencies up to the dissipation range. Additionally it ensured
that the 50 Hz disturbance from the electrical network (and
some other disturbances) are aliased to the high-frequency
end of the spectra, so that they do not influence the analysis.
The correlation between the fixed thermistors is known with
better accuracy than the correlation between a fixed ther-
mistor and the movable thermistor because of the longer ac-
cumulation time.

III. SPATIAL CORRELATION

Denote by T;(t) and T(¢) the temperatures at thermistors i
and j as a function of time #, and by z the distance from the
bottom plate, so that z; and z; are the positions of the two
thermistors. One obtains from the two time series the corre-
lation

(1T
A =—1‘L,—,
88 = Ty W

where the brackets stand for time averages. The second ar-
gument of the correlation function g is the vertical separation
of the points between which the correlation is measured,
Az=z;—z;. Because the flow is not homogeneous, the corre-
lation depends not only on Az but also on z;. It is obvious
from the definition of g that g(z;,Az)=g(z;,—Az), or in gen-
eral, g(z,Az)=g(z+Az,—Az). It will turn out that we can
make the assumption that g(z,Az)=~g(z,—-Az) or g(z,Az)
~g(z,|Az|). This assumption is certainly satisfied for z
=d/2. 1t is also justified for small Az at any position z if the
flow is nearly homogeneous over the length Az. For large Az,
when inhomogeneity certainly plays a role, either z+Az or
z—Az is likely to lie outside the fluid, so that the correlation
can be computed only on one side, anyway. That is why it is
enough to present the results in terms of g(z,|Az|). This
function is shown for three different values of z in Fig. 1.
The fact that there are no significant outliers in these graphs
shows that it is reasonable to use |Az| as argument in g. It is
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FIG. 1. The correlation function g(z,|Az|) (diamonds) for z
=20 mm, 60 mm, and 100 mm (from top to bottom) and the fitted
g, (solid line).

seen that at every position, the spatial correlation is the sum
of two exponentials. The decay lengths of the two exponen-
tials differ by an order of magnitude.

The measured correlation functions are well fitted by the
function

Az]) = ag(2)e M £ [1 - ag(2) e 0. (2)

gt(z’

This functional form guarantees g,(z,0)=1. The two correla-
tion lengths, L; and L,, are shown as a function of z in Fig.
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FIG. 2. The correlation lengths L, (diamonds) and L, (crosses)
as a function of z.

2. The most immediate interpretation for the two terms in Eq.
(2) is that they are related to two types of coherent structures
of sizes L; and L,. The smaller of the two lengths, L, is
approximately independent of z with L;~5 mm. The larger
of the two lengths, L,, reaches a maximum of 44 mm at z
=40 mm and decreases approximately linearly with z at z
>40 mm to reach a minimum of 28 mm in the center of the
cell.

The small scale structures contribute an important fraction
to the total rms of temperature even in the center of the cell.
If we assume g, to be an accurate representation of the true
correlation function, we can compute the spatial spectrum
P(z,k) by

P(z,k) =2 f g.(z,|Az))e ™4l a| A
0

(1-ay)L,
1+ (kLy)?* |

aoL,
= 3
{ 1+ (kL) G)
The rms of temperature at position z is given by P,,
=7lr JoP(z,k)dk, which naturally decomposes into the sum of
two terms, P, and P,, due to structures of size L; and L,. The
first term is

o _L(7 2aki
1= L,ak =dy, (4)
o 0 1+(kL1)

and correspondingly, P,=1-a,. The small scale structures
thus contribute the fraction a; to the temperature fluctua-
tions. Figure 3 shows P,/ P,,, as a function of z. Roughly half
the fluctuations in the center are due to small scale structures.

There is no obvious reason why the correlation should
decay exponentially rather than according to some other
function. It is actually clear on theoretical grounds that g,
must be a poor fit in the neighborhood of Az=0. The deriva-
tive of g, with respect to Az is not defined at Az=0. On the
other hand, the symmetry of the true correlation function,
together with the smoothness of the temperature field, re-
quires the derivative of the correlation function to vanish at
Az=0.
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FIG. 3. The relative contribution of the small structures to the
total power, P/P,,, as a function of z.

The rest of this section will discuss two structures occur-
ring in convection cells in order to show that L; is not un-
reasonably small and to hint at possible origins of L;. The
structures of size L; are much more frequent near the plates
than far away from the plates since the coefficient ay(z) var-
ies from 0.83 at z/d=0.1 to 0.53 at the middle of the cell at
z/d=0.5. The thickness of the thermal boundary layer in this
cell is 2 mm. It could thus be that structures of size L; de-
velop from boundary layer detachments which then drift into
the bulk of the cell. At the same time, it is well known that
passive scalars in turbulent velocity fields form narrow
fronts. The gradient of the scalar is small inside advecting
eddies and large on separatrices in between eddies. This
mechanism leads to typical cliff-ramp structures in time se-
ries of the passive scalar [16]. The thickness of these fronts,
or the dissipation length, is given by d/Pe!’?, where Pe is the
Peclet number of the flow [16]. This length is 2.3 mm in the
present flow. Time series of temperature recorded at isolated
points cannot trace the history of the small scale structures
(do they detach from the boundary layers or are they created
in the bulk?). However, one can search for cliff-ramp struc-
tures in the time series. While some of them appear, they are
much less frequent than symmetric excursions of tempera-
ture characteristic of plumes. The scaling of L; with Ra
would test the hypothesis that L, is related to the thermal
boundary layer thickness. The cell used here does not allow
us to scan Ra over a significant interval.

IV. TEMPORAL SPECTRA

The most straightforward characterization of the time se-
ries T;(f) is to compute power spectra as a function of fre-
quency f. Temporal and spatial spectra are simply related if
there is an advection velocity v large enough so that Taylor’s
hypothesis holds. Wave number k and frequency f are then
connected by k=2mf/v and the temporal spectrum at posi-

tion z, P(z,f), is given by

P = })P(z,%f/v). (5)
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In Refs. [4,5] temporal and spatial (horizontal) power
spectra were compared in a rectangular cell with aspect ra-
tios I';=4, I' =1 at positions d/50 and d/4 (d being the
height of the cell) from the plate. In these regions the mean
advection velocity is well defined and it was shown that a
sort of Taylor hypothesis is valid if v is taken to be the mean
velocity. In the following we will test the hypothesis along
the central vertical axis where the mean vertical velocity is
zero. Figure 4 compares the measured temporal spectra to-
gether with those computed from Egs. (2), (3), and (5). The
values of ay, L, and L, are those obtained from fitting g, to

the measured correlation function g. Pis computed from g,
instead of g because there are not enough points in g for an
accurate Fourier transform. At every position z, an advection
velocity v is chosen in order to obtain the best possible fit of

P to the measured temporal spectrum. As is seen in Fig. 4,
the fit is good in the inertial range and discrepancies appear
in the high frequency range. (On the integral scale the flow
cannot be considered “frozen” so we ignore this range in the
discussion.) The frequencies at which the spectra are poorly
fitted correspond to certain separations Az via the Taylor
hypothesis. Even at those separations, g, is a good fit to g, so

that the discrepancies between P and the experimental spec-
tra must be due to a failure of the Taylor hypothesis rather
than to errors introduced by transforming the wrong correla-
tion function. The condition for the Taylor hypothesis to hold
is T4,/ 70 where 7 is the lifetime of the eddy advected by
flow and 7,,, is the time it takes the flow to advect the eddy
past the probe. Assuming the simple Kolmogorov model, in
the inertial range T,,/7*R"? where R is the size of the
eddy. This implies that the smaller the eddy the closer we are
to the conditions needed for the Taylor hypothesis to be
valid. On the other hand, in the dissipation range the lifetime
7 of an eddy is determined by the viscosity, 7 R?/v, which
makes the ratio 7,4,/ 7<R™'. That is, in the dissipation range,
the smaller the eddy the larger the ratio 7,4,/ 7 which causes
the Taylor hypothesis to fail in the high-frequency range.

Spatial measurements would be redundant if Taylor’s hy-
pothesis was strictly applicable, which it is not. It is thus
necessary to measure the spatial correlation function in order
to see that only two length scales characterize the flow. This
information is blurred in the temporal spectra.

Finally, it is of interest to compare the v(z) obtained from
the fits with other velocities. The velocity in the large scale
circulation is zero in the center of the cell, so that this veloc-
ity cannot be responsible for the approximate validity of the
Taylor hypothesis at low frequencies, at least not in the cen-
ter of the cell. Turbulent velocities themselves could also
provide the necessary advection. In [18] it was found based
on a theoretical model that the effective advection velocity
one should use for the Taylor hypothesis is

Ueff =\ ‘_/3 + (bvrms)zv (6)

where V,, is the mean large scale velocity, v, is the rms of
velocity and b is a numerical factor, which was calculated to

be between 3.1 and 4.2. In our case V=0 so that Eq. (6)
reduces to
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FIG. 4. Measured temporal spectra (diamonds) for z=20 mm,
60 mm, and 100 mm (from top to bottom) together with the fitted

P(z,f) (solid line).
veff= bvrms' (7)

The rms of velocity is compared with v(z) in Fig. 5. The rms
velocity data are known from [17] at similar Ra and Pr as
used here but for a slightly smaller cell, so that all quantities
have to be made nondimensional for comparison in this fig-
ure. v(z) and the velocity rms have identical height depen-
dences, v(z) being about four times larger than the velocity
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FIG. 5. The advection velocity v deduced from the fits of I3(z, f
to the measured spectra (diamonds) together with the velocity rms,
U,ms (crosses) as a function of the position in the cell.

rms. This is in excellent agreement with the theoretical pre-
diction in [18].

V. CONCLUSION

In summary, it has been shown with measurements of
spatial correlations of the temperature field that Rayleigh-
Bénard convection at Ra=1.5X10° and Pr=6.1 in a cubic
cell has a bulk flow of surprisingly simple constitution. Two
characteristic length scales occur in the correlation function
of temperature which hints at the existence of two distinct
coherent structures. There are structures of “large scale”
which yield a temperature signal which decorrelates over a
length in between 1/8 and 1/5 of the cell height, and struc-
tures of “small scale” with a correlation length about 2.5
times the thickness of the boundary layer, or equivalently,
about 2.2 times the dissipation length of a passive scalar in
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the turbulent flow. The small scale structures are more fre-
quent near the boundaries than in the bulk.

The Reynolds number of the flow, based on the size of the
cell and the velocity of the large scale circulation, is 1200,
which implies a Peclet number of 7300. It is striking that
even at these parameters, the temperature field does not ex-
hibit structures covering a broad range of sizes, but instead is
dominated by only two length scales, and that there is not
even a hint of a cascade. The temperature field directly car-
ries the imprint of eddies with large Peclet number. However,
it could be that the velocity field at small scales is more
complex than the temperature field as heat diffusion can
erase from the temperature field small scale structures
present in the velocity field. In addition, thermal plumes
emanating from the boundary layers possess large tempera-
ture gradients so that their temperature signal may hide
weaker contributions created by advection in the bulk.
Therefore, the fact that two length scales dominate the tem-
perature field does not allow us to conclude that a broad
range of scales is absent from the velocity field.

It is necessary to measure spatial correlation functions to
reveal the simplicity of the flow. Temporal spectra, obtained
from a single probe fixed in space, do not provide the same
information because the Taylor hypothesis is not valid
throughout the entire frequency range. In the inertial range,
where the Taylor hypothesis is valid, the velocity used for
transformation of spatial to temporal coordinates is about
four times the velocity rms. Spectra recorded in more turbu-
lent convective states than the one investigated here have
shown power laws in the spectra of turbulent temperature
fluctuations, suggesting a fully developed cascade. It will be
an important task for the future to measure spatial correlation
functions in these more turbulent states.
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